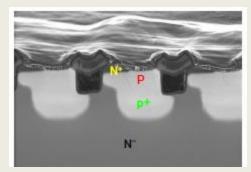

New Release

LTEC Corporation


Your most experienced partner in IP protection

INFINEON FF11MR12W1M1_B11 CoolSiC™ HALF BRIDGE MODULE ANALYSIS REPORT

September 2017. LTEC Corporation released a detailed structure and process analysis report of this 1200V silicon carbide MOSFET power module, the 1st product using a unique asymmetric trench gate transistor design. This device has low Ron relative to comparable products from other device makers such as Rohm and Wolfspeed.

Module

SiC die

SEM cross-section

Device features

- Max. operating voltage: 1200V, rated DC Drain current ID=100A at Tj=25°C
- Very low specific ON-resistance, RON x A= $360m\Omega$ x mm²

The report has two individually purchasable sections: an 80-page Structure Analysis, and a 29-page Process Analysis section. The Structure Analysis section reveals the physical construction of the device, including EDX materials analysis, and many other fine details. The Process Analysis section includes manufacturing process flow, the estimated number of photomasking steps, and the impurity concentration of the epitaxial layer.

Note: The listed report price may not be accurate as it decreases over time. Please contact us for current report pricing: info@ltecusa.com

Table of Contents Structure Analysis Report

	Page
Device summary	
Table 1, Executive Summary	3
Analysis results	4
Table 2. Module structure overview	5
Table 3. Device structure: SiC MOSFET	6
Table 4. Device structure: Layer materials and thicknesses	7
Module overview	8
Electrical characteristic measurement	13
SiC MOSFET Analysis	19
Plain view (Optical Microscope)	20
Plain view, Scanning Electron Microscope (SEM)	29
Cross-sectional structure analysis (SEM)	36
Module structure analysis	48
EDX material analysis	60

17G-0019-1

Table of Contents Process Analysis Report

	Page
Analysis summary	3
Comparison summary (Infineon, Wolfspeed, Rohm)	4
Die	5
Die edge	5
Device structure SiC MOS FET	7
Transistor schematic diagram	
SiC MOSFET cell	
Plain view	11
(a) Die schematic diagram	
(b) Layout pattern schematic diagram	
SiC MOS FET front-end wafer process flow (estimated)	16
SiC JFET process sequence cross-sectional view	18
Relationship between device structure and electrical characteristic	20
Appendix	28
Relevant references	
Relevant patents	

17G-0019-1

