

### LTEC Corporation Your most experienced partner in IP protection

### INFINEON FF1200R12IE5 PRIME PACK™2 IGBT MODULE STRUCTURE ANALYSIS REPORT

*November 2017.* LTEC Corporation released a detailed structure and process analysis report of this new 1200V, 1200A half bridge IGBT power module using 5<sup>th</sup> generation IGBT device and forward diode. The new power module can operate at higher temperature (175C°) and higher power density (1,200A) than previous versions.



Module after resin removal

**SEM cross-section** 

**Reconstructed structure** 

In order to achieve high temperature operation and high power density, several new technologies are implemented within this new device:

- 1. Cu top metal and bond wire (Infineon XT technology <sup>™</sup>)
- 2. Ag-sintered layer die attach
- 3. Dual-oxide trench to reduce Qg

The report has two individually purchasable sections: a 104-page Structure Analysis Section, and a 28-page Process Analysis section. The Structure Analysis Section reveals the physical construction of the device, including EDX materials analysis, and many other fine details. The Process Analysis Section includes manufacturing process flow and the estimated number of photo masking steps.

## Structure analysis report: \$5,000 / Process analysis report: \$5,000

Contact LTEC Corporation for the current price as it decreases over time

17G-0021-1



LTEC Corporation US Representative OfficePhone: (408) 489-1994No.203 2880 Zanker Road San Jose, CA 95034www.ltecusa.comContact: info@ltecusa.com

# Table of ContentsStructure Analysis Report

| Device summary                                                |    |
|---------------------------------------------------------------|----|
| Table 1, Executive Summary                                    | 3  |
| Analysis results                                              | 4  |
| Table 2. Module structure overview                            | 6  |
| Table 3. Device structure: Si IGBT                            | 7  |
| Table 4. Device structure: Layers, materials, and thicknesses | 8  |
| Module overview                                               | 9  |
| Module cross-section analysis                                 |    |
| Cross-section                                                 | 18 |
| EDX analysis                                                  | 48 |
| Si IGBT analysis                                              |    |
| Plain view (optical microscope)                               | 73 |
| Plain view, Scanning Electron Microscope (SEM)                | 84 |
| Cross-sectional structure analysis (SEM)                      | 92 |



## Table of Contents Process Analysis Report

|                                                                                      | Page |
|--------------------------------------------------------------------------------------|------|
| Analysis summary                                                                     | 3    |
| Comparison summary (Infineon 4 <sup>th</sup> gen IGBT vs. 5 <sup>th</sup> gen. IGBT) | 4    |
| Die                                                                                  | 5    |
| Die edge                                                                             | 6    |
| XT technology (5 <sup>th</sup> GEN. IGBT)                                            | 8    |
| Device structure Si IGBT                                                             |      |
| Plan analysis                                                                        | 9    |
| Cross section                                                                        | 13   |
| Process flow (estimation)                                                            |      |
| Si IGBT front-end wafer process, estimated flow                                      | 19   |
| Si IGBT process sequence cross-sectional view                                        | 20   |
| Appendix                                                                             |      |
| References                                                                           | 25   |
| Patents                                                                              | 26   |
| Comparison between IGBT4 & IGBT5                                                     | 27   |

