

New Release

LTEC Corporation

Your most experienced partner in IP protection

ANALYSIS REPORT THE LITTELFUSE 'LSIC1MO120E0080' 1st GENERATION 1200V SIC POWER MOSFET

February 2018. LTEC Corporation released a detailed structure and process analysis report of this 1200V silicon carbide MOSFET, the 1st product from Littelfuse. Littelfuse invested in SiC technology development company 'Monolith Semiconductor' in March 2017 in order to strengthen power semiconductor field. This product is reported as the first SiC MOSFET designed, developed and manufactured by its partnership.

Package top view

Die top view

Device features

- Max. operating voltage: 1200V, rated DC Drain current ID=39A at Tj=25°C
- ON-resistance, RON x A= $562m\Omega$ x mm² (Temperature dependence is lower than competitors')

The report has two individually purchasable sections: an 95-page Structure Analysis, and a 24-page Process Analysis section. The Structure Analysis section reveals the physical construction of the device, including EDX materials analysis, and many other fine details. The Process Analysis section includes manufacturing process flow, the estimated number of photomasking steps, and the comparison with Rohm, Wolfspeed and Infineon products.

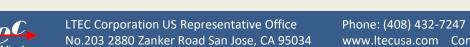

Note: The listed report price may not be accurate as it decreases over time. Please contact us for current report pricing: info@ltecusa.com

Table of Contents

I. Structure Analysis	Page
1. Device summary, Table 1, Executive Summary	3
1.1. Analysis results	4
Table 2. Package structure overview	5
Table 3. Device structure: SiC MOSFET	6
Table 4. Device structure: Layer materials and thicknesses	7
2.0. Package overview	
2.1. X-ray observation	8
2.2. Package overview	
11	
3.0. SiC MOSFET Analysis	
3.1. Plain view (Optical Microscope)	14
3.2. Plain view, Scanning Electron Microscope (SEM)	26
Die corner and peripheral guard ring configuration	
Transistor cell array	
3.3. Cross-sectional structure analysis (SEM)	32
Die thickness	
Transistor cell array: Gate and Source, Pwell diffusion	
Peripherals, die-edge configuration	
4.0. Package analysis	
4.1. Package detail structure analysis	51
4.2. EDX material analysis	75

Table of Contents

II. Process analysis	Page
1.0. Executive summary	3
1.1. Comparison of electric characteristic	4
1.2. Die overview	5
1.3. Die edge	6
1.4. Device structure SiC MOSFET	7
Transistor schematic diagram	
SiC MOSFET configuration	8
(a) Die schematic diagram	
(b) Layout pattern schematic diagram	
1.4. Plan view (SEM): Transistor structure, process features	8
Details of source recess region of the transistor cell array	
2.0. Analysis results	
2.1. Structure (SEM)	9
2.2. Deailes of self-aligned process of N+ and P-well diffusion	13
for determining channel length, Lch	
2.3. Alignment tree of each layers (estimated)	
Device structure SiC MOSFET	15
Layer material, thickness, SiC MOSFET	16
3.0. Process flow	
3.1. SiC MOSFET front-end wafer process flow (estimated)	17
3.2. SiC MOSFET process sequence cross-sectional view	18
4.0. Devise structure vs electrical characteristic	
4-1.Epi layer impurity concentration analysis	21
4-2. Ron	22
4-3. Break down voltage	23
5.0. Relevant references	24
6.0. Relevant patents	24
	17G-0019-1

Phone: (408) 432-7247 www.ltecusa.com Contact: info@ltecusa.com