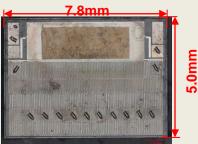


New Release


LTEC Corporation Your most experienced partner in IP protection

ANALYSIS REPORT OF TRANSFORM 'TPH3207WS' 650V POWER GaN FET

April 2018. LTEC Corporation released a detailed structure analysis report of this 650V GaN FET. This product has 50A output current capability, which is the almost double comparing with other GaN devices. This FET is a cascode arrangement using a low-voltage Si-FET device in order to realize a normally OFF configuration.

Package top view

Die top view

Device features

- Max. operating voltage : 650V, rated DC Drain current ID=50A at Tj=25°C
- ON-resistance, RON = $41m\Omega$

Key analysis results

- Actual break-down voltage BVdss=1700V. It has wide margin compared with operating voltage specification (Vdss=650) \rightarrow Twice lager than other GaN's.
- Countermeasures of device structure and layout for JEDEC compliant
- Stacked structure (GaN device and low voltage Si-FET) to fit in TO-247
- The countermeasure for Gate abnormal oscillation and ringing
- The 155 pages report includes
- 1. The comparison with other GaN power devices,
- 2. Package cross section and EDX analysis
- 3. Die plan analysis
- 4. Die cross section (SEM, TEM), epi layer TEM-EDX material analysis
- 5. Electrical characteristic measurement (Ron, leakage current-vs-temperature, break down voltage and Drain capacitance(Coss vs Vds)

Note: The listed report price may not be accurate as it decreases over time. Please contact us for current report pricing : **info@ltecusa.com**

17G-0031-1

LTEC Corporation US Representative Office No.203 2880 Zanker Road San Jose, CA 95034

Table of Contents

I. Structure Analysis	Pag	ge
1. Device summary, Table 1,		3
1.1. Executive Summary		4
1.2. Summary of analysis results		5
1.3. Comparison with other makers' GaN devices		7
2. Package analysis		8
2.1. X-ray observation		9
2.2. Cross section		13
3.0. Cascode arrangement/structure		31
3.1. GaN HEMT die		32
3.2. Si MOSFET die		33
4. GaN HEMT die analysis		34
4.1. GaN HEMT structure analysis summary		35
Table 2. GaN HEMT device structure		35
Table 3. Process of GaN HEMT	36	
Table 4. Layer material and thickness		36
4.2. Plan view		37
4.3. Plan view (SEM)		58
4.4. Cross section (SEM)		62
4.5. Cross section (TEM)		69
4.6. GaN Epi structure and material analysis (SEM EDX, TEM EDX)		76
4.7. Other material analysis (SEM EDX, TEM EDX)		77

17G-0031-1

II. Electrical characteristic	Page
5. Evaluation	78
5.1. Cascode Id-Vds characteritics	79
5.2. OFF-state Id-Vds and Ea(activation energy) (Note1)	80
5.3. OFF-state break-down voltage (GaN HEMT)	81
5.4. Capacitances (Ciss, Coss, Crss) - Vds	82
5.5. Ron: Correlation analysis of the GaN structural parameters and	
electrical measurements.	83
5.6. Estimation of 2DEG sheet resistance and carrier concentration	85
6. Appendix	
6.1. EDX (Package)	87
6.2. EDX (GaN HEMT)	124

Note1: Device temperature is as the parameter.

17G-0031-1

