

New Released

# **LTEC Corporation**

Your most experienced partner in IP protection

### 1200V SiC MOSFET (Infeneon, Wolfspeed, and Rohm) TECHNOLOGY BENCHMARK REPORT

*Aug 2018.* LTEC Corporation released the technology benchmark report of the latest 1200V Si C MOSFET of Infineon, WIfspeed and Rohm. It includes the following contents; Technique for realizing high reliability operation at high temperature, Structural analysis result, Evaluation of the figure of merit from the electric property evaluation result, Cost analysis such as chip cost and wafer cost, and so on.

### **Report overview**

The following data is insufficient in the SiC power transistor data sheet, and this report complements such insufficient parts using the correlation between physical analysis and electrical characteristics.

- 1. Off-drain leakage current voltage and temperature dependency
- 2. Threshold voltage DIBL (Drain Induced Barrier Lowering), drain voltage dependency
- 3. Short circuit (short circuit, SC) capacity
- 4. The thermal impedance of short pulse time (1 us to 100 us)

#### **Analysis summary**

- The SiC MOSFET realizes about 1/20 in switching energy for the Si IGBT used for reference. The simulated maximum switching frequency are 16 kHz for Si-IGBT and 200-400 kHz for SiC MOSFET.
- Despite the high threshold Vth, the company C SiC has the lowest RONxA at high temperature(644 m $\Omega \cdot$  mm 2). It is nearly twice as 1168 m $\Omega$ mm 2 againt the company A SiC.
- It is predicted that the on-resistance (RONxA) trend per unit area will continue the reduction rate of 30% / 3 years.
- We estimate wafer cost and average selling price ASP) of those three companies in this report.

18G-0008-1



# **Table of Contents**

| Executive summary                                                                  | 2  |
|------------------------------------------------------------------------------------|----|
| Analysis background and purpose                                                    | 6  |
| SiC device oulook                                                                  | 8  |
| Competition between Si, GaN and SiC power transistors                              |    |
| Related characteristics of semiconductor materials for power electronics devices   |    |
| Consideration of power electronic devices at high temperature                      |    |
| Current status and outlook of SiC and GaN power transistors                        |    |
| Table 4: Current status of SiC devices and module manufacturers (as of April 2018) |    |
| Technology trends and evolution of SiC MOSFET                                      | 11 |
| Discussion for manufacturing cost and price of SiC MOSFET                          | 17 |
| Benchmark of SiC MOSFET                                                            | 26 |
| Concern about reliability of SiC MOSFET                                            |    |
| Table 6: 1200 V Si - IGBT vs. SiC transistor benchmark                             |    |
| Table 7: Structure of the evaluated 1200 V SiC MOSFET                              |    |
| Performance index FOM of analyzed products                                         |    |
| SiC MOSFET benchmark results                                                       |    |
| Comparison result: Performance & FOM                                               |    |
| Evaluation of electric characteristics                                             |    |
| Analysis and comparison main electrical and and characteristics                    |    |
| Electrical characteristics (data sheet + measured value)                           |    |
| Comparison of intrinsic electrical properties                                      |    |
| Id - Vds                                                                           |    |
| RON component analysis                                                             |    |
| Drain current temperature dependence and breakdown voltage at off mode             |    |
| Short-circuit tolerance and thermal impedance analysis                             |    |
| Summary and Conclusion                                                             | 70 |
| References                                                                         | 71 |
| Appendix                                                                           | 73 |



| Vo. | Company               | LTEC<br>Report? | Epi Wafer | Device<br>Chip | Module | Comments                  |
|-----|-----------------------|-----------------|-----------|----------------|--------|---------------------------|
| 1   | WOLFSPEED<br>(CREE)   | Yes             |           |                |        |                           |
| 2   | ROHM                  | Yes             | Si<br>(su |                |        | latively<br>8).           |
| 3   | MITSUBISHI Electric   | Yes             |           |                |        |                           |
| 4   | Fuji Electric         | Yes             |           |                |        |                           |
| 5   | Hitachi               |                 |           |                |        |                           |
| 6   | Infineon              | Yes             |           |                |        |                           |
| 7   | STMicro               | Yes             |           |                |        | power card.               |
| 8   | MicroSemi             | Yes             |           |                |        |                           |
| 9   | IXYS→ LITTELFUSE      | Yes             |           |                |        |                           |
| 10  | General Electric (GE) |                 |           |                |        | odule,                    |
| 11  | United SiC Corp       | Yes             |           |                |        |                           |
| 12  | X-Fab                 |                 |           |                |        |                           |
| 13  | Denso                 |                 |           |                |        |                           |
| 14  | Toyota                |                 |           |                |        |                           |
| 15  | Monolith (US)         |                 |           | v              |        | Using SiC Foundry (X-Fab) |

#### Table.1 FOM outline and device cost and sales price

|              |                                                                                                                                                                                                                                                                                                                                                        |                                                                                 |      | SiC |      | Si      |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------|-----|------|---------|
|              | Summary of Performance FOMs                                                                                                                                                                                                                                                                                                                            | Units                                                                           | А    | В   | С    | D igets |
| FOM          | Specific Effective ON Resistance, RONxA @ Tj=Tjmax<br>Specific Intrinsic ON Resistance, RONxAA @ Tj=Tjmax<br>Qg x RON @ Tj=Tjmax<br>Ciss x RON @ Tj=Tjmax<br>Crss x RON @ Tj=Tjmax<br>Coss x RON @ Tj=Tjmax<br>Turn-off Switching Energy, Eoff x RON @ Tj=Tjmax<br>Turn-on Switching Energy, Eon x RON @ Tj=Tjmax<br>Maximum Switching Frequency, fmax | mΩ • mm2<br>mΩ • mm2<br>nC • Ω<br>pF • Ω<br>pF • Ω<br>mJ • mΩ<br>mJ • mΩ<br>kHz | 1168 | 670 | 644  | 2600    |
| Cost & Price | Average Selling Price, ASP (Retailer)<br>ASP per Ampere (@ 100°C)<br>ASPxRON<br>Estimated Manufacturing Die Cost<br>Processed Wafer Cost (Estimated)                                                                                                                                                                                                   | \$/unit<br>\$/A<br>\$∙Ω<br>\$/unit<br>\$/wafer                                  | 1001 |     | 1001 | 390     |

1.40

0.00

0

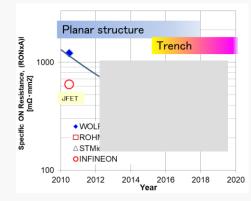



Fig. 3.4: Trend of on-resistance (RONxA) performance index (FOM) per area

> LTEC Corporation US Representative Office No.203 2880 Zanker Road San Jose, CA 95034

 
 UV SIC MOSFET P

 •ROHM 2nd, 1200V

 •ROHM 3rd, 1200V

 •ROHM 3rd, 1200V

 •WOLF 2nd, 1200V

 •WOLF 3rd, 1200V

 •WOLF 3rd, 1200V

 •Microsemi 1st, 1200V

 •Alicrosemi 1st, 1200V

 •LITTELFUSE, 1200V
1.20 1.00 1200V SiC MOSFET [\$/A] 0.80 ASP/A 0.60 0.40 0.20

20

1200V SiC MOSFET Price per Ampere

Fig. 4.3: Average selling price per ampere (ASP / A)

60

40

Rated DC Drain Current, Id [A] @100°C



Phone: (408) 489-1994 www.ltecusa.com Contact: info@ltecusa.com

### ※レポートデータ抜粋

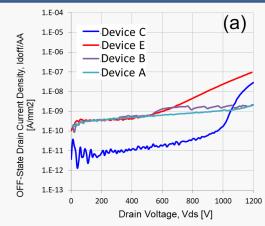



Fig. 5.14: Comparison of drain leakage current

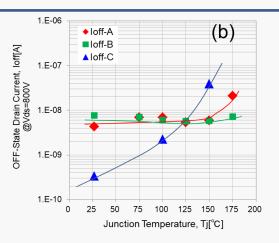



Fig.5.15: Drain current temperature dependence at off mode: loff (Vgs = 0 V and Vds = 800 V)

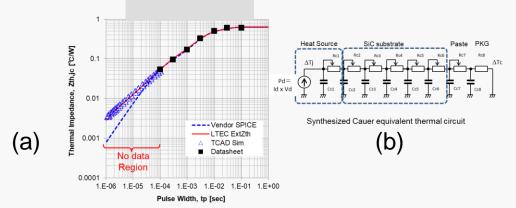
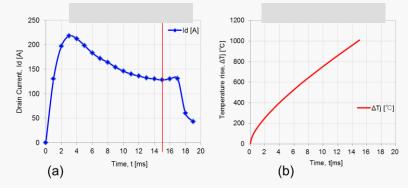




Fig.5.30: (a) Thermal impedance Zth vs. on-time pulse width (b) extracted equivalent heat circuit



|         |      | Datasheet<br>Graph     | 1D<br>Model | Simulated |      |  |  |  |  |
|---------|------|------------------------|-------------|-----------|------|--|--|--|--|
| Pd<br>t | W    | 8.43 x 10 <sup>4</sup> |             |           |      |  |  |  |  |
|         | μS   | 15                     |             |           |      |  |  |  |  |
| Zth     | °C/W | 0.006※                 | 0.003       | 0.0106    |      |  |  |  |  |
| ΔTj     | °C   | 506                    | 253         | 894       | 1033 |  |  |  |  |

Fig.5.31: (a) Shorted drain current waveform at Vds = 580 V and Vgs = 19 V (b) Die temperature at short circuit mod Table 3. The data summary of the device temperature calculated from this analysis (yellow)



LTEC Corporation US Representative Office No.203 2880 Zanker Road San Jose, CA 95034

Phone: (408) 489-1994 www.ltecusa.com Contact: info@ltecusa.com