

### LTEC Corporation Your most experienced p

Your most experienced partner in IP protection

# ST Micro's SiC power module in the Tesla Model3 motor inverter – detailed structure analysis report

New

Release

*November 2018.* LTEC Corporation released a detailed structure analysis report of the SiC power module found within the TESLA Model3 motor inverter.



Power Module (Top view)

#### Key findings (SiC Module)

The following technologies are used in this design to realize highly reliability, heat resistance, and excellent heat dissipation characteristics.

- Active Metal brazed Copper (AMC) substrate
- Ag sintering to attach the die to the AMC substrate
- Use of Cu clip to reduce ON-resistance and parasitic inductance

#### Key analysis results (SiC MOSFET)

- Maximum operating voltage is estimated to be 650 V based on N epi-layer thickness
- Junction Termination Extension (JTE) is used to reduce electric field at the die edge
- Use of N\_ buffer layer between the N\_ epi layer and the N<sup>+</sup> substrate
- Good current density margin even at high temperature operation
- This 121-page report includes
- 1. SiC Module construction analysis (Package, X-ray observation, cross section and EDX analysis)
- 2. SiC MOSFET plan view and layout analysis
- 3. SiC MOSFET Cross-sectional structure analysis (cell array and die-edge configuration)

Note: The report price decreases over time. Contact **info@ltecusa.com** for current price.

18G-0025-1





Power module package identification

## **Table of Contents**

|    |                                         | Page |
|----|-----------------------------------------|------|
| 1. | Device summary, (Table 1)               | 3    |
|    | 1.1. Summary of analysis results        | 4    |
| 2. | Package analysis                        | 8    |
| 3. | Die Plain view analysis                 | 12   |
|    | 3.1. Plain view (Optical Microscope)    | 13   |
|    | 3.2. Plain view (SEM)                   | 33   |
| 4. | Package structure analysis              | 39   |
|    | 4.1. Cross-sectional structure analysis | 40   |
|    | 4.2. Material analysis                  | 63   |
| 5. | Die structure analysis                  | 97   |
|    | 5.1. Cross-sectional structure analysis | 98   |
|    | 5.2. Material analysis                  | 114  |
|    |                                         |      |

18G-0025-1

