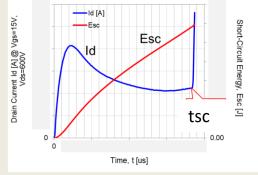


New Release

LTEC Corporation


Your most experienced partner in IP protection

WOLFSPEED E3M0065090D AUTOMOTIVE CERTIFIED 900V SiC MOSFET SHORT CIRCUIT ROBUSTNESS ANALYSIS REPORT

February 2020. The short-circuit (SC) capability of power transistors, especially SiC power MOSFETs, is one of the most critical reliability-related specifications. Compared to Si-based IGBTs, the size of the SiC transistor is smaller. This leads to significant reduction in SC endurance time (tsc).

Package

Die image

Drain current waveform and short-circuit energy (Esc)

This is the first published short-circuit robustness analysis report that examines the correlation between short circuit robustness and the physical structure of the E3M006509d. This product is compliant to the AEC Q101 automotive certification standard.

The report includes:

- Identification of the mechanisms limiting short-circuit capability, measurements, physical analysis results, and extraction of the critical temperature (Tj(crit)) at the onset of failure.
- Comparison of short-circuit robustness with a 3rd generation 1200V process and a 900V transistor. Examination of the differences in semiconductor structure, process, and their effect on short circuit robustness.
- Comparison of electrical characteristics (off-state leakage current and its temperature dependence), and identification of differences and limitations.

Use value of the evaluation results in this report

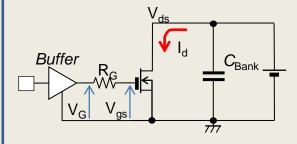
- The minimum response time requirement of the short-circuit protection circuit can be estimated.
- The internal temperature of the transistor can be estimated by performing SPICE electrothermal simulation using the measured short-circuit drain current waveform and endurance time (t_{sc.f}).

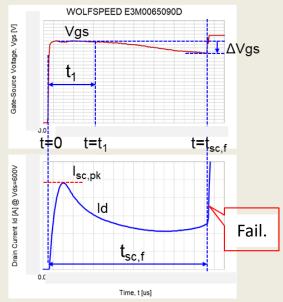
Note: The report price may change over time. For current price contact info@ltecusa.com.

19G-0005-1

Phone: (408) 489-1994 www.ltecusa.com Contact: info@ltecusa.com

Table of Contents


	Page			
Summary				
Background, purpose and executive summary				
Physical analysis results				
Device structure and material analysis	5			
Table 1. Summary of each parameter				
Short circuit robustness evaluation				
Evaluation circuit	7			
Evaluation conditions	9			
Short circuit robustness evaluation results				
Voltage and current waveforms	11			
Table 3. Summary of measurement results				
<u>Discussion for evaluation results</u>				
Peak drain current (Isc,pk) vs. drain voltage (Vds)	21			
Short circuit endurance time(tsc) vs. drain voltage (Vds)	22			
Short circuit energy (Esc,f) vs drain voltage (Vds)	23			
Short circuit endurance time (tsc) vs power dissipation (Pd = $Id \times Vds$)	24			
Gate leakage current considerations during SC	25			
Estimation of junction temperature (ΔTj) rise	28			
Thermal impedance	31			
Comparison of transistor structure and electrical characteristics	34			
Comparison of the 1200V C3M0075120D & 900V E3M0065090D devices				
Drain current at short circuit mode	35			
Electrical characteristics	41			
Conclusion	44			
<u>Appendix</u>				
References	45			



Excerpts from the report

Fig.2: Die

Fig. 17: Measured gate-source voltage and drain current waveforms during SC event.

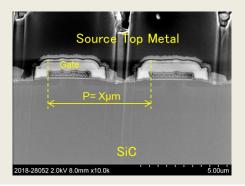


Fig.4: Cross-sectional image of SiC transistor

Table 2: Evaluated conditions				
#	Vds [V]	Vgs [V]	Purpose	
1	600	15	Basic SC characteristics	
2	600	15	Check reproducibility	
3	400	15	Drain voltage effect	
4	800	15	и	
5	800	15	Check reproducibility	
6	600	12	Check Gate-Source voltage effect	
7	600	18	и	
8	600	20	66	

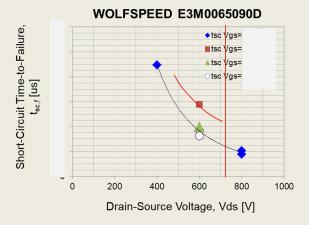


Fig. 20: Measured dependence of the SC time to failure $t_{\rm sc,f}$ vs the drain voltage Vds.

Excerpts from the report (cont.)

Dissipated Power Density, P_d/A [W/mm²]

Fig. 28: Measured short circuit endurance time $(t_{sc,f})$ vs. Power dissipation density $Pd/A = (Vds \times Id)/A$.

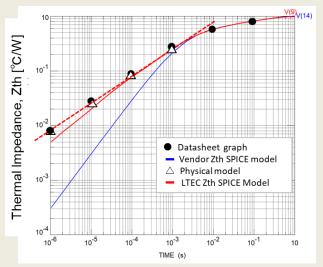
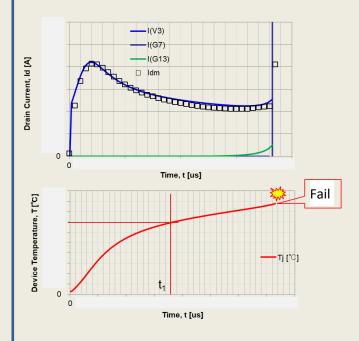



Fig. 30: E3M0065090D thermal impedance plot \bullet : Data from datasheet, (blue line) calculated using the SPICE model provided by the manufacturer, and \triangle : Calculated using the analysis result by LTEC

Fig. 31: Extracted transistor temperature rise using short circuit transient SPICE model

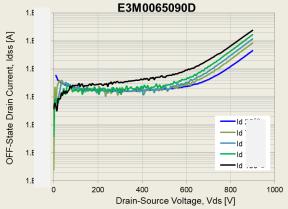


Fig. 38: Measured off –state drain current (@ Vgs = 0V)

