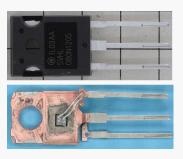
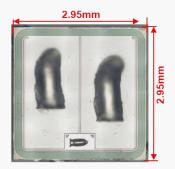


LTEC Corporation Your most experienced partner in


Your most experienced partner i IP protection

On SEMI NVHL080N120SC1 SiC-MOSFET Die Structure and Process Analysis Reports


New

Release

February 2020. LTEC Corporation released detailed structure and process analysis reports of the ON-Semiconductor 1200V SiC MOSFET.

Package

Die image

Product overview

In March 2019, ON-Semiconductor announced production of their 1200V, Ron=80m Ω and Id=20A SiC MOSFET, promising high power density and efficiency. These features simplify the need for thermal management, BOM cost, size and weight. *The NVHL080N120SC1 is AEC-Q101 qualified for stringent automotive applications*.

Report contents

SiC-MOSEFT structural analysis report

- Package appearance, package cross-section analysis, EDX material analysis
- SiC-MOSFET die plane analysis, layout
- SiC-MOSFET die cross section analysis, cell part, die edge

SiC-MOSFET process and device characteristics analysis report

- Estimation of SiC-MOSFET manufacturing process flow and schematic flow. Cross section is based on structural analysis results.
- Electrical characteristics evaluation and correlation with structural parameters

Note: The report price may change over time. For current price contact **info@ltecusa.com**.

19G-0007-1

Table of Contents Structure analysis report

Content		
1. Device summary		
1-1. Summary of analysis	4	
2. Package analysis		
2-1. External view and X-ray observation	9	
2-2. SiC MOSFET die photograph	12	
2-3. Package cross-sectional structure analysis	14	
3. SiC MOSFET die analysis	30	
3-1. Plane structure analysis (OM)	31	
3-2. Plane structure analysis (SEM)	49	
3-3. Cross-sectional structure analysis (SEM)	62	
4. Appendix EDX analysis results	77	
4-1. EDX analysis	78	

Table of contents Process analysis report

Content			Page
1		ON-Semi SiC MOSFET NVHL080N120SC1	
		Executive summary	3
	1.1	ON-Semi and other SiC MOSFETs comparison	4
	1.2	SiC MOSFET die	5
	1.3	Die edge termination	6
	1.4	Device structure: SiC MOSFET	7
		Transistor schematic cross section	7
2		SiC MOSFET observation	8
	2.1	Planar structure analysis (SEM)	8
		Transistor structure and process features	8
	2.2	Measures to enhance transistor robustness	12
	2.3	Details of N + and P-well diffusion self-alignment process to	
		estimate channel length Lch	13
3		Summary of ON-Semi SiC MOSFET NVHL080N120SC1 analysis	
		results	14
		Table 1 Device structure: SiC MOSFET	14
		Table 2 SiC MOSFET structure :	
		Layer material /film thickness	15
4		Process flow	16
	4.1	SiC MOSFET front-end wafer process flow (estimated)	16
	4.2	SiC MOSFET process sequence cross-sectional view	17
5		Electrical characteristics evaluation	22
	5.1	ON-Semi SiC MOSFET NVHL080N120SC1 Id-Vds	23
	5.2	Off-state drain current vs. drain voltage (Vds) and activation	
		energy (Ea) with device temperature as parameter	24
	5.3	Off-state breakdown voltage BVdss characteristics	25
	5.4	Comparison of leakage current between manufacturers	26
	5.5	Body diode characteristics	27
	5.6	Capacitance (Ciss, Coss, Crss) vs.Vds characteristics	28
	5.7	Device structure and electrical characteristics analysis: ON	
		resistance	29
	5.8	N-epi layer impurity concentration analysis	31
	5.9	Device structure and electrical characteristics analysis:	
		breakdown voltage	32
6		Related references	33
7		Related patents	33

