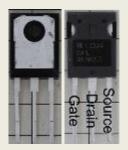


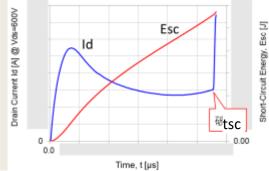
New Release


LTEC Corporation

Your most experienced partner in IP protection

ON SEMICONDUCTOR NVHL080N120SC1 AUTOMOTIVE CERTIFIED 1,200V SIC MOSFET SHORT CIRCUIT ROBUSTNESS ANALYSIS REPORT

February 2020. The short-circuit (SC) capability of power transistors, especially SiC power MOSFETs, is one of the most critical reliability-related specifications. Compared to Si-based IGBTs, the size of the SiC transistor is smaller. This leads to significant reduction in SC endurance time (test)


time (tsc).

Package Abstract

Die image

Drain current waveform and short-circuit energy (Esc)

This is the first published short-circuit robustness analysis report that examines the correlation between short circuit robustness and the physical structure of the NVHL080N120SC1 device. This device is compliant with the AEC Q101 automotive standard.

The report includes:

- Identification of the mechanisms limiting short-circuit capability, measurements, physical analysis results, and extraction of the critical temperature (Tj(crit)) at the onset of failure.
- Comparison of short-circuit robustness with other makers' 1,200V SiC MOSFETs. Examination
 of the differences in semiconductor structure, process, and their effect on short circuit
 robustness.
- Comparison of the electrical characteristics (off-state leakage current and temperature dependence) with other makers, and identification of differences and limitations .

Use value of the evaluation results in this report

- The minimum response time of the short-circuit protection circuit can be estimated.
- The internal device temperature can be estimated by performing electrothermal SPICE simulation using measured short-circuit drain current waveform and endurance time (t_{sc, f}).

Note: The report price may change over time. For current price contact info@ltecusa.com.

19G-0007-3

Phone: (408) 489-1994 www.ltecusa.com Contact: info@ltecusa.com

Table of Contents

	Page		
Summary			
Background, purpose and executive summary			
Physical analysis results			
Device structure and material analysis	5		
Table 1. Summary of each parameter			
Short circuit robustness evaluation			
Evaluation circuit	7		
Evaluation conditions	9		
Short circuit robustness evaluation results			
Voltage and current waveforms	10		
Table 3. Summary of measurement results	17		
<u>Discussion for evaluation results</u>			
Peak drain current (Isc,pk) vs. drain voltage (Vds)	19		
Short circuit endurance time (tsc) vs. drain voltage (Vds)	20		
Short circuit energy (Esc,f) vs drain voltage (Vds)			
Short circuit endurance time(tsc) vs power dissipation (Pd = $Id \times Vds$)			
Gate leakage current considerations during SC			
Estimation of junction temperature (ΔTj) rise	27		
Thermal impedance	30		
Comparison of transistor structure and electrical characteristics	33		
Comparison of Onsemi's and Wolfspeed's 1,200V transistors			
Electrical characteristic	35		
Drain current at short circuit mode	37		
Conclusion	39		
<u>Appendix</u>			
References	40		

Excerpts from the report

Fig.2: Die

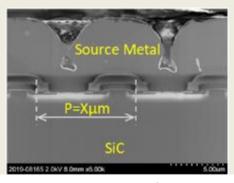


Fig.4: Cross-sectional image of SiC transistor

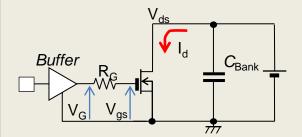
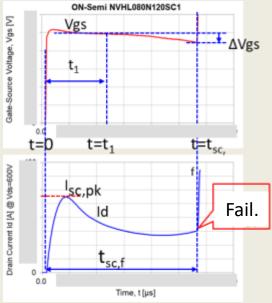
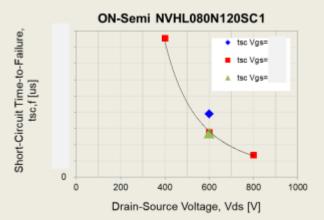




Table 2: Evaluation Conditions

#	Vds [V]	Vgs [V]	Purpose
1	600	20	Basic SC characteristics
2	600	20	Check reproducibility
3	400	20	Drain voltage effect
4	800	20	u
5	600	16	Gate-Source voltage effect
6	600	24	и

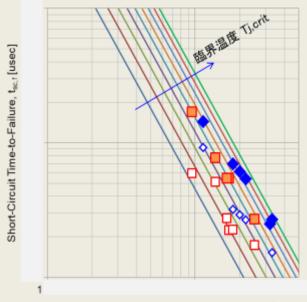

Fig.17: Measured gate-source voltage and drain current waveforms during SC event.

Fig.18: Measured dependence of the SC time to failure $t_{sc.f}$ vs the drain voltage Vds.

Excerpts from the report (cont.)

Dissipated Power Density, P_d/A [W/mm²]

Fig.28:Measured short circuit durable time (tsc, f) vs. Power dissipation density $Pd/A = (Vds \ x \ Id)/A$.

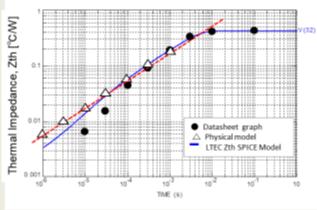
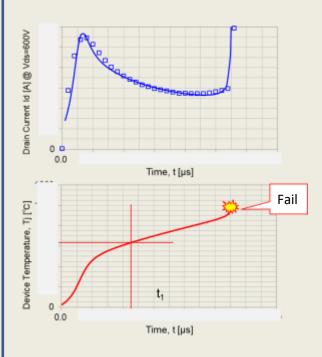
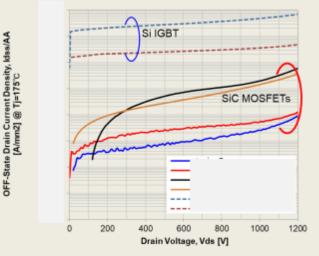



Fig.29: NVHL080N120SC1 Thermal impedance plot


•: Data from datasheet,

(Blue line) Calculated using the SPICE model provided by manufacturer, and

 (Δ) Calculated using the analysis result by LTEC

Fig. 30: Extracted transistor temperature rise using short circuit transient SPICE model

Fig. 33: Measured off-state drain current (@ Vgs = 0V)

