

New Release

LTEC Corporation

Your most experienced partner in IP protection

HITACHI AUTOMOTIVE POWER MODULE STRUCTURE ANLYSIS REPORT - Product used in the of the Audi eTRON 55 QUATTRO EV

Inverter unit

Power module

IGBT

Product outline

- Audi eTraon is the first EV from Audi.
- The inverter unit is manufactured by Hitachi Automotive, and it realizes high outpower density by installing double sided cooling power module (approximately 160% higher power density compared to the company's conventional product).

Basic features

- This power module is a compact high-efficiency double-sided cooling power module that incorporates a new generation IGBT (Insulated Gate Bipolar Transistor).
- It uses heat sinks with pin type cooling fins on both sides. An insulating sheet is used between the cooling fin and the lead frame. DBC board is not used.

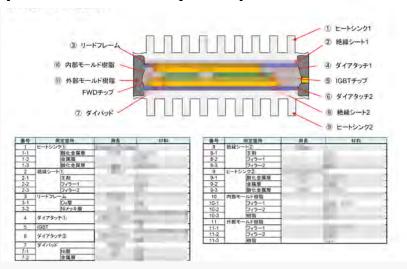
Report contents

- The internal layout is estimated from the results of the module plane analysis. Cross-section analysis and material analysis are performed centering on the joints and components of the double-sided cooling structure.
- In the IGBT analysis, in addition to the plane and cross-section analysis of the cell area and the die edge, the structure is estimated from the plane observation of the temperature sensing diode and the gate protection diode.
- The module thermal resistance including the water-cooling part of the heat sink is estimated based on the results of the structural analysis.

Report price: \$6,500

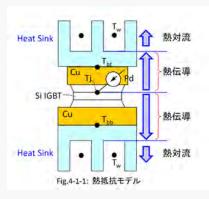
Note: The report price may change over time. For current price contact info@ltecusa.com.

19G-0018-3


Table of Contents

	Page
Device summary	3
Analysis summary	4
Table 2: Device structure (IGBT)	5
Table 3: Device structure (Material & thickness)	6
Table 4: Module structure	7
Module analysis	
Overview	8
IGBT die image	15
Cross section	16
IGBT structure analysis	
Plane view observation (OM)	36
Plane view observation (SEM)	56
Cross section	64
<u>Appendix</u>	
Thermal resistance modeling	77
Heat sink analysis modeling: Effective heat transfer convection coefficient \mathbf{h}_{eff}	78
Comparison between Fuji electric module and Hitachi	81

19G-0018-3



Excerpts from the analysis report

Phone: (408) 489-1994 www.ltecusa.com Contact: info@ltecusa.com