

New Release


LTEC Corporation

Your most experienced partner in IP protection

RHOM SCT3080HLHR AUTOMOTIVE CERTIFIED 1200V SiC MOSFET SHORT CIRCUIT ROBUSTNESS ANALYSIS REPORT

February 2020. The short-circuit (SC) capability of power transistors, especially SiC power MOSFETs, is one of the most critical reliability-related specifications. Compared to Si-based IGBTs, the size of the SiC transistor is smaller. This leads to significant reduction in SC endurance

time (tsc).

Orain Current Id [A] @ Vds=600\ Fsc ld tsc Time, t [us]

Package

Die image

Drain current waveform and short-circuit energy (Esc)

This is the first published short-circuit robustness analysis report that examines the correlation between short circuit robustness and the physical structure of the SCT3080HLHR device. This device is compliant to the AEC Q101 automotive standard.

The report includes:

- Identification of the mechanisms limiting short-circuit capability, measurement, physical analysis results, and extraction of the critical temperature (Tj(crit)) at the onset of failure.
- Comparison of short-circuit robustness with other makers' 1200V SiC MOSFETs. Examination of the differences in semiconductor structure, process, and their effect on short circuit robustness.
- Comparison of the electrical characteristics (off-leakage current and temperature dependence) and identification of differences and limitations.

Use value of the evaluation results in this report

- The minimum response time of the short-circuit protection circuit can be estimated.
- The internal device temperature can be estimated by performing electrothermal SPICE simulation using measured short-circuit drain current waveform and endurance time (t_{sc. f}).

Short-Circuit Energy, Esc [J]

Table of Contents

	Page			
Summary				
Background, purpose and executive Summary				
Physical analysis results				
Device structure and material analysis				
Table 1. Summary of each parameter				
Short circuit robustness evaluation				
Evaluation circuit	7			
Evaluation conditions	9			
Short circuit robustness evaluation results				
Voltage and current waveform	10			
Table 3. Summary of measurement results				
<u>Discussion for evaluation results</u>				
Peak drain current (Isc,pk) vs. drain voltage (Vds)	19			
Short circuit endurance time (tsc) vs. drain voltage (Vds)				
Short circuit energy (Esc,f) against drain voltage (Vds)				
Short circuit endurance time (tsc) vs. power dissipation (Pd = $Id \times Vds$) 22				
Gate leakage current considerations during SC	23			
Estimation of junction temperature (ΔTj) rise	27			
Thermal impedance	30			
Comparison of transistor structure and electrical characteristics	33			
Comparison of the 1,200V ROHM and Wolfspeed transistors				
Electrical characteristics	35			
Drain current at short circuit mode	37			
Conclusion	39			
<u>Appendix</u>				
References	40			

Excerpts from the report

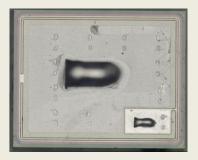
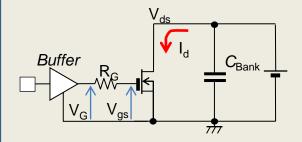
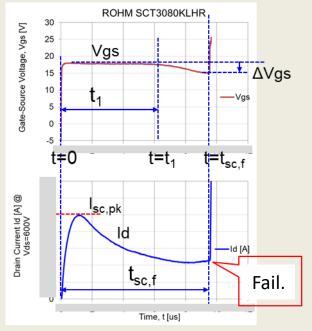




Fig.2: Die

Fig.17: Measured gate-source voltage and drain current waveforms during SC event.

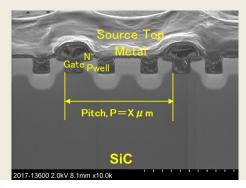
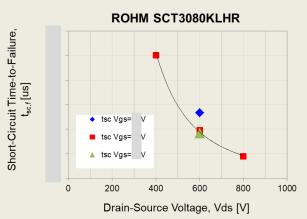



Fig.4: Cross-sectional image of SiC transistor

Table 2: Evaluation conditions

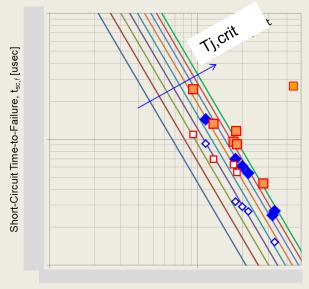
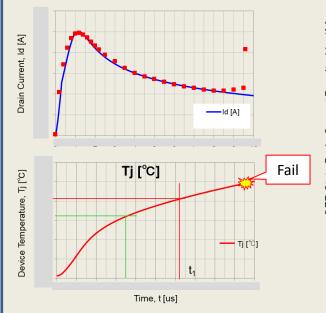

#	Vds [V]	Vgs [V]	Purpose
1	600	18	Basic SC characteristics
2	600	18	Reproducibility check
3	400	18	Drain voltage effect
4	800	18	"
5	600	15	Gate-Source voltage effect
6	600	20	и
7	600	24	u

Fig.18: Measured dependence of the SC time to failure $t_{sc.f}$ vs the drain voltage Vds.

Excerpts from the report (cont.)



Dissipated Power Density, P_d/A [W/mm²]

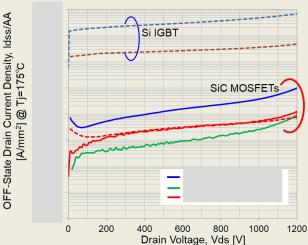

Fig.28:Measured short circuit durable time $(t_{sc,f})$ vs. Power dissipation density Pd/A=(Vds x Id)/A.

Fig.29: SCT3080KLHRThermal impedance plot
■: Data from the datasheet,
Blue dash line): Calculated using the SPICE model
provided by manufacturer, and
△ Calculated using the analysis result by LTEC
Red line: LTEC synthesized SPICE model

Fig.30: Extracted transistor temperature rise using short circuit transient SPICE model

Fig.33: Measured off-state drain current (@ Vgs = 0V)

