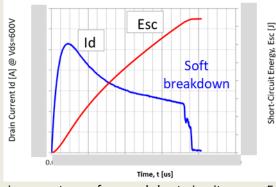


New Release

LTEC Corporation


Your most experienced partner in IP protection

INFINEON IMW120R045M1 CoolSiC 1,200V SiC MOSFET SHORT CIRCUIT ROBUSTNESS ANALYSIS REPORTS

February 2020. The short-circuit (SC) capability of power transistors, especially SiC power MOSFETs, is one of the most critical reliability-related specifications. Compared to Si-based IGBTs, the size of the SiC transistor is smaller. This leads to significant reduction in SC endurance time (tsc).

Package

Die image

Drain current waveform and short-circuit energy Esc

Abstract

This report evaluates short-circuit capability and the behavior under fault condition when the device is brought to damage-causing overstress. **Compared with other SiC MOSFETs, INFINEON's CoolSiC MOSFETs exhibits a "soft" failure without exploding**. Other SiC MOSFETs explode at the moment of the onset of short-circuit fault.

The report includes:

- Identification of the mechanisms limiting short-circuit capability, measurement, physical analysis results, and extraction of the critical temperature (Tj(crit)) at the onset of failure.
- Comparison of short circuit robustness with other makers' 1,200V SiC MOSFETs. Examination
 of the differences in semiconductor structure, process, and their effect on short circuit
 robustness.
- Comparison of the electrical characteristics (off-leakage current and temperature dependence) and identification of differences and limitations.

Use value of the evaluation results in this report

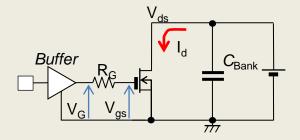
- The minimum response time of the short-circuit protection circuit can be estimated.
- The internal device temperature can be estimated by performing electrothermal SPICE simulation using measured short-circuit drain current waveform and endurance time (t_{sc. f}).

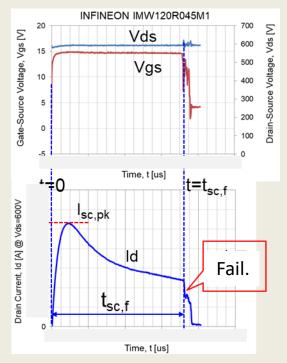
Note: The report price may change over time. For current price contact info@ltecusa.com.

19G-0020-1

Phone: (408) 489-1994 www.ltecusa.com Contact: info@ltecusa.com

Table of Contents


	Page		
<u>Summary</u>			
Background, purpose and executive summary			
Physical analysis results			
Device structure and material analysis			
Table 1. Summary of each parameter			
Short circuit robustness evaluation			
Evaluation circuit			
Evaluation conditions			
Short circuit robustness evaluation results			
Voltage and current waveform			
Table 3. Summary of measurement results			
<u>Discussion for evaluation results</u>			
Peak drain current (Isc,pk) vs. drain voltage (Vds)			
Short circuit endurance time(tsc) vs. drain voltage (Vds)			
Short circuit energy (Esc,f) vs. drain voltage (Vds)			
Short circuit endurance time (tsc) vs. power dissipation (Pd = $Id \times Vds$)			
Short circuit failure mode			
Estimation of junction temperature (ΔTj) rise			
Thermal impedance			
Comparison of transistor structure and electrical characteristics			
Comparison of Infineon's 1,200V CoolSiC and Wolfspeed transistors			
Electrical characteristic	35		
Drain current at short circuit mode			
Conclusion			
<u>Appendix</u>			
References			



Excerpts from the report

Fig.2: Die

Fig.17: Measured gate-source voltage and drain current waveforms during SC event.

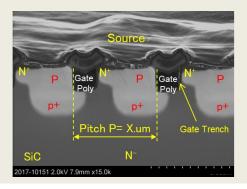
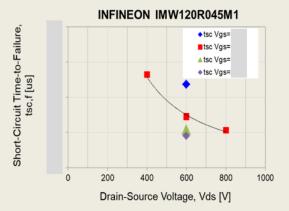



Fig.4: Cross-sectional image of SiC transistor

Table 2: SC evaluation conditions

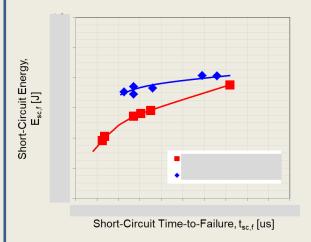

#	Vds [V]	Vgs [V]	Purpose
1	600	15	Basic SC characteristics
2	600	15	Reproducibility check
3	400	15	Drain voltage effect
4	800	15	"
5	600	12	Gate-Source voltage effect
6	600	18	и
7	600	21	и

Fig.18:Measured short circuit durable time $(t_{sc,f})$ vs. Drain voltage (Vds)

Excerpts from the report (cont.)

Fig.28:Measured short circuit critical energy-to-failure $E_{\text{sc.f}}$ vs endurance time $(t_{\text{sc.f}})$.

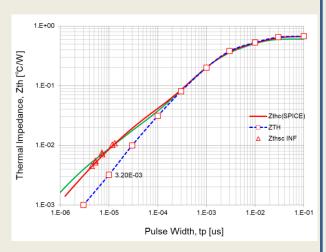
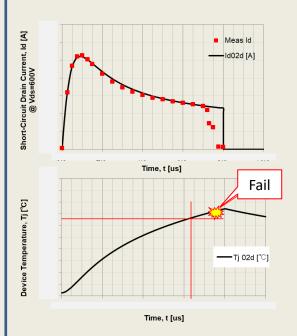
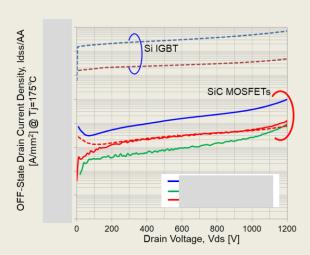




Fig.29: IMW120R045M1 Thermal impedance plot:
☐: Data from datasheet,
Blue dash line: Calculated using the SPICE model provided by manufacturer, and

△: Calculated using the analysis result by LTEC

Fig.30: Extracted transistor temperature rise using short circuit transient SPICE model

Fig.33: Measured off-state drain current (@ Vgs = 0V)