Improve New Product Positioning, Reduce Time to Market, Protect Your IP Through Benchmarking and Deep Analysis

Lajos (Louis) Burgyan, Alberto Adan Ph. D, Yuji Kakizaki LTEC Corporation

www.ltecusa.com

Introduction

About LTEC corporation **Definition of terms:** Technical Analysis (Hardware, IP) **Reverse Engineering (RE) Re-inventing RE: Harvesting the synergies between** product development and learning through RE: Collaborative RE (CRE) Collaborative Outsourced RE (CORE) Practical (real life) examples **Summary**

About LTEC Corporation

LTEC is Japan's dominant provider of intellectual property services. We provide
 Technical analysis of products released to market
 Intellectual property (patents) analysis
 Technology analysis

We focus on power electronics

LTEC Corporation and Its Client Base

Region	Companies
Japanese Electrical manufacturers Semiconductor/Component manufacturers	Panasonic, Toshiba, SONY, NEC, Hitachi, Mitsubishi, Murata, Taiyo Yuden, Rohm, Renesas, TDK, Sharp (Foxconn), Yamaha
Japanese Automotive manufacturers	Toyota, Mitsubishi motors, Mazuda, Denso, Aishin, Hitachi automotive, Yazaki, Calsonickansei, Yamaha
USA Semiconductor manufacturer	Qualcomm, On-Semiconductor, IDT, Maxim, Intel (Altera),
Korean Automotive manufacturer	Hyundai automotive, LGE
Korean Electrical manufacturer	Samsung, LGE
Taiwanese Semiconductor manufacturer	MediaTek, TSMC

Most companies use RE

Definition of Terms

Technical Analysis is secondary research involving IP (patents,) technology, hardware/software RE

Reverse Engineering (RE) - Definition

- RE is process to extract knowledge or design blueprints from anything man made.
- RE is about learning about new technologies, knowhow not yet available from textbooks, patents and other publications just yet; about latest technologies.
- RE teaches you things not readily available.
- RE helps your company to remain competitive.

I have a lot more to say about this! Come to Booth 1339

!RE is about learning!

Example

RE as a means to learning

Example: Learning through RE

Example: RE performed on latest generation SiC MOSFETs. How is Tj=200°C operation achieved by new package EMC?

T

Operating junction temperature range

RE reveals undisclosed features

°C

Learning through RE

Example: We performed RE on latest generation SiC MOSFETs. How is Tj=200°C operation achieved by new package EMC?

T_j=200C^o Continuous

▶ Tj=150C^o Abs. Max.

What are the key enablers?

RE identifies key enablers

Enabling Continuous 200°C Operation

Evidence:

SEM cross-section observation of evaluated SiC devices. (a) Transistor structure. (b) Detail of the top metal (source) electrode.

Measured package resin FTIR spectrum of samples (a) SCT30N120 (SiC Tjmax = 200°C), and b) the SCH2080KE (SiC Tjmax = 175°C). Strong peaks (around 980 cm⁻¹ and 1200 cm⁻¹) in the SCT30N120 SiC device package are observed.

b)

a)

RE quickly identifies key enablers

RE vs. IP Analysis: Different Objectives, Identical Methodology

R&D AND PRODUCT DEVELOPMENT DEPARTMENTS

IP (PATENT) DEPARTMENTS AND LAW FIRMS

WANTS TO KNOW: COMPETITORS' PRODUCTS AND TECHNOLOGIES

• 5965 9691

WANTS TO KNOW: COMPETITORS' IP AND TECHNOLOGIES

ANALYZE LEARN UNDERSTAND

RE has much to offer to both branches

Our Unique Approach to RE

Collaborative, Outsourced RE

Re-inventing RE

About LTEC corporation Definition of terms: Technical Analysis (Hardware, IP) Reverse Engineering (RE) **Re-inventing RE: Harvesting the synergies between** product development and learning through RE: Collaborative RE (CRE) Collaborative Outsourced RE (CORE) Practical (real life) examples Summary

A Unique Approach to Technical Analysis Collaborative Reverse Engineering (CRE)

Collaborative Outsourced Reverse Engineering (CORE)

Provides dynamically targeted RE by working collaboratively and interactively with
 Product development teams
 IP analysis and protection teams

Facilitates fast learning through RE in a way that
 Enhances new product positioning
 Accelerates the pace of product development

LTEC offers Collaborative Outsourced RE

RE in Product Development

Product Development Flow

Recognize: RE is a natural starting point to develop creative new ideas

CORE Provides Active Support in Product Development

We are engaged in the background as needed

Why "Collaborative" RE?

Manpower/resource utilization \Box Enhanced productivity \rightarrow faster time to market Parallel vs. serial process \Rightarrow faster time to market Unique know-how Cost of labor Delivers deep understanding of your competitors' strengths and weaknesses prior to product definition more competitive product Uncovers hidden features, materials, trends Helps avoid re-inventing the wheel

Mitigates risks

Why "Outsourced"?

You can free up designers to focus on product development \rightarrow faster time to market! build a solid foundation for design activity by benefiting from our broad knowledge gained from analyzing similar products knowledge of the latest technology proprietary tools and methodologies

Outsourcing RE provides depth of knowledge, enhanced productivity, and risk mitigation

Examples

Example: Why "Outsource"?

Understand your competition (hardware, software, and patents, technology) prior to product definition/design

Learn from the past, learn from the best, apply to the future

Rely on broad knowledge of the competitive landscape

Example: Collaboration with Design Teams Is manpower available to do the work in-house?

- RE is labor intensive!
- Parallel RE and design vs. serial? Faster time to market!
 2-LAYER SUBSTRATE PROCESSOR

10-LAYER PCB

3D model for EM field solver (PDN analysis)

3D model for PDN or signal integrity analysis in compatible file format

Example: Understand Latest Technology

Early detection of technology trends

Example: Understand Latest Technology

Early detection of technology trends

Example: Understand Latest Technology

Apple (A10)

Package

Early detection of technology trends

Example: Finding the Not So Obvious...

RE reveals essential features, materials not shown in the datasheet, nor discussed in conferences!

This is what we give you

Reconstructed details

This is what you get

Essential details not shown or published anywhere

Ramifications on device reliability, Q/A, F/A

Example: Deep Analysis

Image sensor material analysis: find ultra-low volume of Al within ZrO2 layer within an

- Measure the characteristic X-ray energy
- Convert to atomic %
- Characteristic X-ray has specific energy of element by element

Virtually no limit to the level of details

Example: RE-based Physical Modeling

<u>Ex.:</u> RE analysis and thermal model of SiC power module

RE improves your system/device/component modelling

Example: Avoid Re-inventing the Wheel

A USPTO study found that "For the patents where at least one claim was held unpatentable, the prior art used by PTAB had been in front of the examiner during prosecution 59 percent of the time." Source: USPTO, Jan. 2015

Proactive RE & IP search saves \$

Tools of Our Trade

Advanced tool set enables high productivity and deep analysis

Advanced Productivity Enhancement and Modeling Tools

Outsourcing RE speeds up product development

The Art of Delayering

Fatal over-polishing may occur in the die peripheral portion can be easily predicted.

Over-polished region

Proprietary delayring Technology down to 10nm

Typical over-polishing

De-layering deep submicron technologies, advanced FOWLP, interposers, RDL, is challenging!

Enhancing Productivity: PCB Schematic Viewer

Facilitates cross-probing between

□ schematic diagram and components in the PCB, or

schematic diagram and components in the reconstructed layout images

Advanced Schematic Viewer

1. Click the signal line in the layout viewer

2. Highlight the corresponding signal line in the circuit viewer

2. Highlight the corresponding signal line in the layout viewer

Signal cross – probing: easy to navigate

Advanced Schematic Viewer

1. Click the component in the layout viewer

2. Highlight the corresponding component in the schematic viewer

2. Highlight the corresponding component in the layout viewer

Cross-referencing components vs. schem.

Pattern Matching Tool

Google search term: "youtube LTEC pattern matching"

https://www.youtube.com/watch?v=Z2Vkgr3JWVw& list=PLe5EA9FhfOlwkxABwYRQ3jzPJkLhAO81P

Target Pattern On SEM image or layout

Potentially High \$ reward

Helps identify infringing patterns

Modeling Mechanically and Electrically Integrated (Mechatronic) Systems (Example)

Outsourcing RE speeds up product development

Example: System-level Analysis

by the fan (1) through duct (2)

2	Air duct1
4	DC/DC Converter supplies the 12V battery
5	Lithium-ion battery
6	Air duct 2
8	Battery cooling fan bracket
10	Battery cooling blower fan
11	Air duct 3

Useful for electronic subsystem designers!

Automotive DC-DC converter thermal analysis & modeling In its actual environment

Why "Outsourced"? Example: "Mechatronics"

12V DC-DC converter

Objective: precise thermal modeling of the heatsink-device/component Interface

IC designers are unfamiliar with the thermal environment in integrated mechanical-electronic systems

Why "Outsourced"? Example: Mechatronics

DC-DC converter: PCB (after transformer removal)

De-construction and preparation for modeling in the actual design environment

DC-DC converter circuit and its main heat sources.

Automotive DC-DC Converter Thermal Analysis & Modeling

Model Development

DC-DC Converter Thermal Network

Temperatures			
Tj1	FB Transistors Tj	100.6	⊃°C
Tj3	Rectifier Diodes Tj	132.8	⊃°
Tt	Transformer Temperature	90.6	°C
Tk	Coil Temperature	111.6	°C
Ths1	FB Transistor-Heat sink interface	86.6	⊃°C
Ths2	Transformer-Heat sink interface	84.6	°C
Ths3	Rectifier Diode-Heat sink interface	82.4	°C
Ths4	Coil Heat sink Interface	81.6	°C
TAVG	Heat sink Interface Average Temp	83.8	°C
Rth, hs	Heat sink AVG thermal Resistance	0.48	°C/W
TaH	Ambient (Heatsink Fin surface) temperature	50	°C
PB	Full-Bridge power loss (k=4)	28	W
PD	Rectifier Diode dissipation	24	W
PT	Transformer power loss	12	W
PK	Output Coil power loss	6	W

Estimated device/components' temperatures

Note the high Tj value of the rectifier diodes

Network representation for the DC-DC converter.

Automotive DC-DC Converter Thermal Analysis & Modeling

Why "Outsourced"? Example: Mechatronics

Temperature Distribution Heatsink-device/component Interface

90.0-92.0 88.0-90.0 86.0-88.0 84.0-86.0 82.0-84.0 80.0-82.0 78.0-80.0 76.0-78.0 74.0-76.0

Heatsink-device/component interface

The data format is compatible with the designers' "toolbox."

9

49

33

29

Summary

Deep RE is a complex labor-intensive process
 A highly competitive market, the emergence of high-temp. electronics, mechanical-electrical integration, new materials and methods, create the demand for <u>Collaborative Outsourced Reverse Engineering (CORE)</u>

CORE

- provides up-to-date competitive intelligence
- provides direction to product development teams
- enhances product positioning
- effectively reduces the time to market
- mitigates risks

In-house or outsourced RE can be an integral part of product development

Summary (2)

□ <u>Collaborative</u> <u>Outsourced</u> <u>Reverse</u> <u>Engineering</u> (CORE)

- Provides expertise in performing deep analysis
- Provides a broad horizon of visibility of the competitive landscape
- Has proprietary tool set and unique know-how to enhance productivity
- Facilitates close, dynamic, interactive, direct collaboration with product development teams

Questions?

www.ltecusa.com

More Questions? Please visit us at Booth 1339

IP Service

Thank you!

www.ltecusa.com

