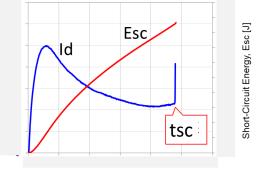


LTEC Corporation

Your most experienced partner in **IP** protection

RHOM SCT3080HLHR AUTOMOTIVE CERTIFIED 1200V SiC MOSFET SHORT CIRCUIT ROBUSTNESS ANALYSIS REPORT


February 2020. The short-circuit (SC) capability of power transistors, especially SiC power MOSFETs, is one of the most critical reliability-related specifications. Compared to Si-based IGBTs, the size of the SiC transistor is smaller. This leads to significant reduction in SC endurance time (tsc). Current Id [A] @ Vds=600V

New

Release

Time, t [us]

Package

Die image

Drain current waveform and short-circuit energy (Esc)

This is the first published short-circuit robustness analysis report that examines the correlation between short circuit robustness and the physical structure of the SCT3080HLHR device. This device is compliant to the AEC Q101 automotive standard.

Drain

The report includes:

- Identification of the mechanisms limiting short-circuit capability, measurement, physical analysis results, and extraction of the critical temperature (Tj(crit)) at the onset of failure.
- Comparison of short-circuit robustness with other makers' 1200V SiC MOSFETs. Examination of the differences in semiconductor structure, process, and their effect on short circuit robustness.
- Comparison of the electrical characteristics (off-leakage current and temperature) dependence) and identification of differences and limitations.

Use value of the evaluation results in this report

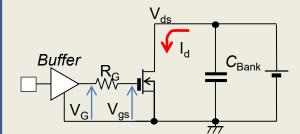
- The minimum response time of the short-circuit protection circuit can be estimated.
- The internal device temperature can be estimated by performing electrothermal SPICE simulation using measured short-circuit drain current waveform and endurance time (t_{sc}, t) .

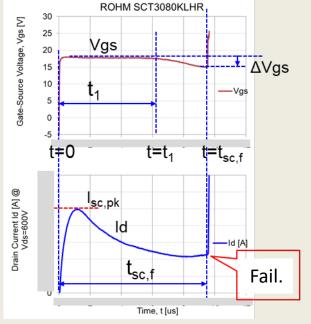
Report price: \$6,500

Contact LTEC Corporation for the current price as it decreases over time

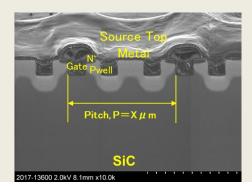
19G-0019-1

LTEC Corporation US Representative Office Phone: (408) 489-1994 No.203 2880 Zanker Road San Jose, CA 95034 www.ltecusa.com Contact: info@ltecusa.com


Table of Contents			
Ρ	age		
Summary			
Background, purpose and executive Summary	3		
Physical analysis results			
Device structure and material analysis			
Table 1. Summary of each parameter			
Short circuit robustness evaluation			
Evaluation circuit	7		
Evaluation conditions	9		
Short circuit robustness evaluation results			
Voltage and current waveform	10		
Table 3. Summary of measurement results	17		
Discussion for evaluation results			
Peak drain current (Isc,pk) vs. drain voltage (Vds)	19		
Short circuit endurance time (tsc) vs. drain voltage (Vds)	20		
Short circuit energy (Esc,f) against drain voltage (Vds)	21		
Short circuit endurance time (tsc) vs. power dissipation (Pd = Id x Vds)	22		
Gate leakage current considerations during SC	23		
Estimation of junction temperature (ΔTj) rise	27		
Thermal impedance	30		
Comparison of transistor structure and electrical characteristics	33		
Comparison of the 1,200V ROHM and Wolfspeed transistors			
Electrical characteristics	35		
Drain current at short circuit mode	37		
Conclusion			
Appendix			
References	40		



Excerpts from the report



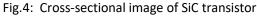


Fig.17: Measured gate-source voltage and drain current waveforms during SC event.

LTEC Corporation US Representative Office No.203 2880 Zanker Road San Jose, CA 95034

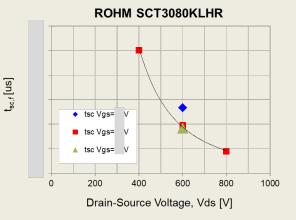

Short-Circuit Time-to-Failure,

Table 2: Evaluation conditions

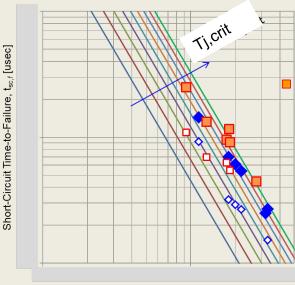

#	Vds [V]	Vgs [V]	Purpose
1	600	18	Basic SC characteristics
2	600	18	Reproducibility check
3	400	18	Drain voltage effect
4	800	18	"
5	600	15	Gate-Source voltage effect
6	600	20	"
7	600	24	"

Fig.18: Measured dependence of the SC time to failure $t_{sc,f}$ vs the drain voltage Vds.

Phone: (408) 489-1994 www.ltecusa.com Contact: info@ltecusa.com

Excerpts from the report (cont.)

Dissipated Power Density, P_d/A [W/mm²]

Fig.28:Measured short circuit durable time (t_{sc.f}) vs. Power dissipation density Pd/A=(Vds x Id)/A.

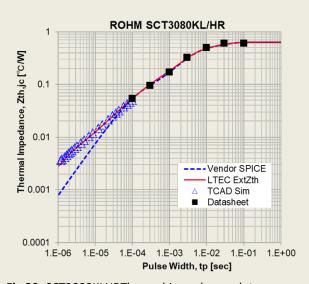


Fig.29: SCT3080KLHRThermal impedance plot : Data from the datasheet, Blue dash line): Calculated using the SPICE model

provided by manufacturer, and \triangle Calculated using the analysis result by LTEC Red line: LTEC synthesized SPICE model

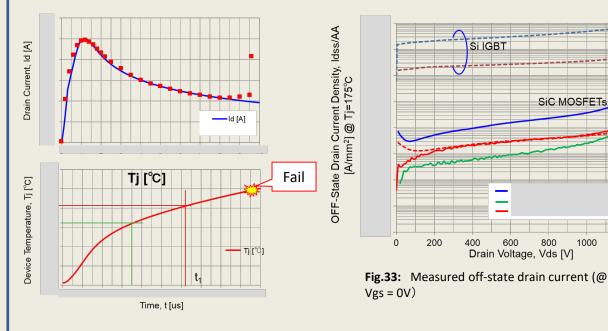


Fig.30: Extracted transistor temperature rise using short circuit transient SPICE model

Phone: (408) 489-1994

www.ltecusa.com Contact: info@ltecusa.com

1000

1200