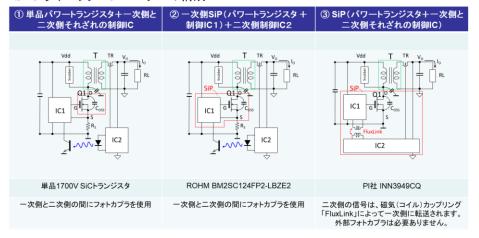


New Release


LTEC Corporation

Your most experienced partner in IP protection

SiC MOSFET(1700V):

1000V入力DC-DC(Flyback)コンバータに使用される SiCトランジスタ調査レポート

QR フライバック コンバーターの構成

回路図のQ1は、高電 圧スイッチングトラン ジスタを表しています。 トランジスタQ1が今 回の調査対象です。

背景

補助電源として使用される定格電力が 150W 未満で、主にフライバックトポロジが採用されている車載用 1000V入力対応 フライバックコンバータへの関心が高まっています。 一部の企業は、1700V SiCトランジスタを採用することで、フライバック コンバータの定格電圧を上げています

- ・ローム BM2SC124FP2-LBZE2
- Power Integrations (PI) INN3949QC
- •Navitas: SiC MOSFETメーカーGenSiCの買収

このカテゴリ向けの 1700V SiC トランジスタを提供している企業は、ROHM、INFINEON、WOLFSPEED、MICROSEMI、GeneSiC、LITTELFUSE である。

本レポートについて:

本調査レポートでは、1700V SiCトランジスタを高電圧スイッチングトランジスタとして使用する 1000V 入力 疑似共振(QR)フライバック コンバータの実装と、それらに関連する機能を、上記の表 1 に示す 3 つの構成について調査します。対象とする製品は次のとおりです。

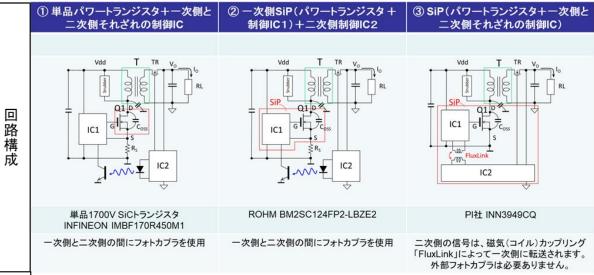
- (1) Infineon 1700V CoolSiC,
- (2) BM2SC124FP2-LBZE2 に搭載された ROHM 1700V SiC
- (3) PI INN3949CQ コンバータ

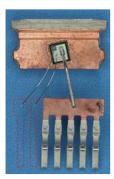
また、物理構造解析から製造コストを評価・比較行います。

- ⇒ 当レポートは、技術の評価と傾向、および製造コストの評価に役立つ情報を提供します。
 - 1700V SiCトランジスタを用いたAC-DCコンバータ調査レポート 価格70万円(税別) 発注後1weekで納品

株式会社エルテック Phone: 072-787- 7385 664-0845 兵庫県伊丹市東有岡4丁目42-8 e-mail: contact@ltec.biz
HP: https://www.ltec-biz.com/

Report No : 22R-0016-1 Release day: 2023.02.28


【目	次】		頁
1		エグゼクティブサマリー	2
	1.1	本調査報告書で扱われる主題	5
2		はじめに	6
	2.1	背景	6
		高耐圧SiCトランジスタの補助電源への応用事例	7
		Table 2.1: 疑似共振 (QR) フライバック コンバータ構成	8
		Table 2.2: 1700V SiC トランジスタを使用した 1000V VIN SiP フライバック コンバータの比較	9
	2.2	SiCトランジスタの展望: Si、GaN、SiCパワートランジスタ間の競争	10
	2.3	疑似共振 (QR) フライバック コンバーターの動作	12
3		1700V SiCトランジスタを使用したフライバックコンバータ	14
	3.2	SiP フライバック コンバータの最大消費電力について	17
	3.3	除熱に関する考慮事項	19
	3.4	フライバック コンバーター: BOMのコスト	21
		Table 3.3: QR フライバック コンバーターの構成:BOMコスト	22
		Table 3.4: QR フライバック コンバーターの構成 (3): 2次側全て同期整流回路の場合	23
4		定格1700VのSiCトランジスタベンチマーク	25
	4.1	ROHM, UnitedSiC, GeneSiC, INFINEONのSiC トランジスタ特性比較	26
	4.2	調査した1700V SiCトランジスタのチップ写真	28
		Tablle4.2: 評価された1700 V SiC MOSFETの構造	29
	4.3	定格 1700V の SiC トランジスタの単位面積あたりのオン抵抗(RonxAA) のトレンド	30
	4.4	定格1700VのSiCトランジスタの測定耐圧電圧BVdss	32
	4.5	SiCトランジスタの耐圧電圧 BVdss とエピ層の厚さ関係	33
	4.6	1700V SiC トランジスタのスイッチング容量 Coss とエネルギー Eoss の比較	34
5		定格1700VのSiCトランジスタ原価・価格について	35
	5.1	製造コスト	36
		Table 5.1: 1700V SiC MOSFETの製造プロセスの概要	37
		Table 5.2: 1700V SiC トランジスタ製造コストの見積もりとまとめ	39
6		調査まとめ	41
7		関連文献・資料目録	42
8		Appendixes	43
		Appendix 1: パワートランジスタ関連の用語集	44
		Appendix 2: パワーMOSFETのオン抵抗性能指数(FOM):RONxA	45
		Appendix 3: SiCウェハやエピ価格情報	46
		Appendix 4: SiCウェハサプライヤー	47
		Appendix 5: フライバック コンバータのBOM	48
		Appendix 6: ROHMとPI社のFlybackコンバータSiP構成と搭載チップまとめ	52
		Appendix 6: PI社特許と主要なテクノロジー	53
		Appendix 7: PI社 INN3949CQ SiP 実装	59
		Appendix 8: Pl社のSiPパッケージと高電圧スイッチングトランジスタの最大面積について	61


株式会社エルテック Phone: 072-787- 7385 664-0845 兵庫県伊丹市東有岡4丁目42-8 e-mail: contact@ltec.biz HP: https://www.ltec-biz.com/

調査レポート抜粋 (1)

表 2.1: 疑似共振 (QR) フライバック コンバータ構成

ハッケージ内の高電圧FE⁻

表3.3: QR フライバックコンバーターの構成:BOMコスト

witching Transistor rimary-Side controller lyback Transformer output Rectifier Tr/Dio secondary-side controller	
ther Components	

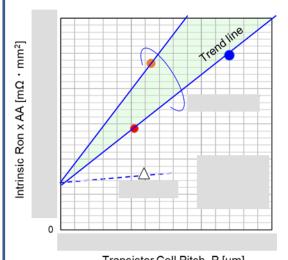
調査レポート抜粋 (2)


4-1. ROHM, UnitedSiC, GeneSiC, INFINEONのSiCトランジスタ特性比較

INFINEON																																									;
SPEED																																									-
GeneSiC WOLFSPEED																																									
GeneSiC																																									
₽₩Ŧ																																									
UNITEDSIC																																									
ROHM																																									
ROHM																																									2011
M ROHM																																									ALIA
ROHM ROHM																																									1010
Units			>	C <	>		>	am	d t	, ų	4	ű.	NA.	2 2		2 2	3	3	wo.	wo.	MO.	mmxmm	mm7	788	mo-mm2	mD-mm2	*C-mm2/W	A/S	Dasd	2	pr/mm/2	Omod ::	Campin I	>	En	un.	E S	Ę	ωu	s	\$/A
	Part Number	Package Technology Process Generation	Rated Drain Voltage. Vds	Rated Drain Current, Id. ® Ton 100th	Threshold Voltage, Vth	*Conduction Mode		ON Resistance, RON @ Tj=25°C	ON Resistance, RON @ Tj=150°C	Gate input Capacitance, Ciss	Drain Output Capacitance, Coss	Gate-Drain Reverse Capacitance, Crss	Transconductance, Gm @ Vds=10V	Turn-on delay time, tdon Rise time tr	Turn-off delay that	Fall time, if	Turn-on Switching Loss, Eon	Turn-off Switching Loss, Eoff	Thermal Resistance, Rth.jc(typ)	Thermal Resistance, Rth.jc(max)	Thermal Impedance, Zth.jc@tp=10us	Chip Size,	Colo Gize Area, A	Tensistor Active Area, AA	Per area ON resistance, RONAA, @Ti=2577	Per area Intrinsic ON resistance, RONXAA @Tj=25°C	Per area Thermal Reistance, Rth.jox A (max)	Gm/ld	Ciss/Gm	Ciss x Ron	Cost v Box		001 X 700	Measured Breakdown Voltage, BVdss	SiC chip thickness	N-drift epi thiokness, Xepi	N-Buffer epi thiomess	Transistor Cell Pitch	Gate dielectricthickness, Tox	Average Selling Price, ASP	Average Selling Price, ASP/A[ASP/d@100°C]
	a.	ia le	¶æ ;0	. ; 00	. ; Ի	. 18:	_	_	ıK.				-1	; α	. ; F	- ; u.	, F :	-1	<u>-:</u>	-:	<u>-:</u>	0:0	J : 1	-	,			اے ا						_	_		Z	-	J	⋖	*

調査レポート抜粋 (3)

4.2 1700V SiCトランジスタのチップ写真



(b)

(c)

Transistor Cell Pitch, P [um]

Fig. 4-2: 1700V定格SiCトランジスタの単位面積あたりのオン抵抗のトランジスタセルピッチ(P)依存性傾向。

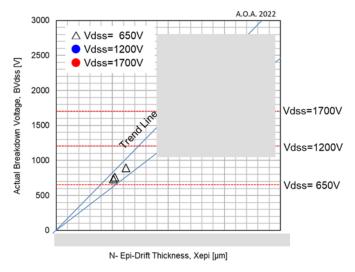
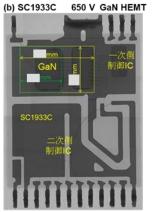
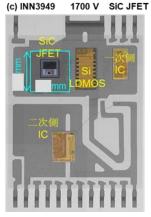


Fig. 4-5: 複数の定格 電圧Vdss の SiCトランジスタの N-epi/ドリフト層厚さ (Xepi) と実際の耐圧電圧 BVdss との関係。

調査レポート抜粋 (4)


表5.2: 1700V SiC トランジスタ製造コストの見積もりとまとめ


20.2	.17000 3にドランフハア表起コハドの	75 K 0 7 C 0	_
			١
憲 気仕様	ON resistance, RON	mΩ	
弁	RON x A	mΩ•mm²	
~~	Coss @ Vds=100V	pF	
J.	Process		
) H	Wafer size	mmΦ	
煶	Raw wafer cost + Epi	\$/枚	
ウェハ製造コスト	Processed wafer cost	\$/枚	
7	Wafer processing	\$/枚	
	Chip size	mm x mm	
4	Gross Die per Wafer		
チップコスト	Yield (assumed for Do~ def/cm2)	%	
7	Estimated manufacturing cost (include PKG + Test)	\$/die	
価格	Distributor Selling Price(>2000 pieces)	\$	

Appendix 8: PI社のSiPパッケージと高電圧スイッチングトランジスタの最大面積について

PI社の絶縁コンバーターのラインナップはすべて、フォトカプラーを排除し、一次側と二次側の制御ICと高電圧スイッチングトランジスタを統合することを可能にする当社のFluxLink技術を使用して、コンパクトなコンバーターソリューションを実現出来る。PI社のコンバータのラインナップには、以下に示すように、(a) Si、(b) GaN、(c) SiC技術で実装された高電圧トランジスタが含まれます。

株式会社エルテック Phone: 072-787- 7385 664-0845 兵庫県伊丹市東有岡4丁目42-8