

# New Release

## **LTEC Corporation**

Your most experienced partner in IP protection

SiC MOSFET(1200V): MOSFET (Rohm第4世代, 東芝第3世代, GeneSiC第3世代) 短絡耐量調査・ベンチマークレポート

#### レポート概要

車載モータインバータにSiC MOSFETを採用している車両が中国車を中心に増えてきました。 インバータ搭載パワーデバイスの大きな課題の一つとして、短絡耐性があり、各社コスト (チップサイズ、歩留まり)制約の中で、短絡耐性の向上に取り組んでいます。

当社では、実測短絡テストと合わせて、トランジスタの構造解析、物理モデリングとシミュレーションを使い、トランジスタの短絡耐性のデータ評価、熱インピーダンスモデルの構築を行っており、2020年にSiC MOSFETの短絡耐性評価のベンチマークレポート(19G-0025-1)をリリースしました。今回は下記3社の最新世代デバイスについてレポート化しています。

ROHM 第4世代 SiC MOSFET GeneSiC 第3世代 SiC MOSFET 東芝 第3世代 SiC MOSFET

### レポート内容 ※次頁 目次参照

- ・SiC MOSFETの短絡耐量の比較。 (ROHM(4th)、WOLFSPEED(3rd)、GeneSiC(3rd)、東芝(2nd) (3rd))
- 各社技術トレンドとトランジスタのスケーリング、酸化膜厚との関連、考察。
- ・短絡状態でトランジスタが安全にターンオフする最大短絡時間(tscm)の抽出。

#### 本レポート情報は下記に活用できます。

- 短絡保護回路の最小応答時間を推測。
- ・安全にターンオフする最大短絡時間(tscm)は保護回路設計の制約として使用可能。
- ・測定された短絡ドレイン電流波形と耐久時間(tsc,f)を、SPICE電気・熱シミュレーションで使用、トランジスタの内部温度および臨界破壊エネルギー(Esc,f)を推定。

レポート販売価格(税別)¥650,000 発注後1weekで納品



株式会社エルテック Phone: 072-787- 7385 664-0845 兵庫県伊丹市東有岡4丁目42-8 e-mail: contact2@ltec.biz HP: https://www.ltec-biz.com/

> Report No :22R-0023-1 Release day:2023. 05.10

|             | 次   |                                                                                                                                                                                                                                                                                                                 | 頁                          |  |
|-------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| 1           | 1.1 | レポート要旨                                                                                                                                                                                                                                                                                                          | 2                          |  |
|             |     | 表1:1200V SiC MOSFET短絡特性評価結果の概要                                                                                                                                                                                                                                                                                  | 3                          |  |
|             | 1.2 | はじめに                                                                                                                                                                                                                                                                                                            | 6                          |  |
| 2           |     | 表2:用語集および略語                                                                                                                                                                                                                                                                                                     | 7                          |  |
|             | 2.1 | モーターインバーターの短絡イベントと電圧/電流波形                                                                                                                                                                                                                                                                                       | 8                          |  |
|             | 2.2 | 1200V SiC MOSFETで測定された短絡波形                                                                                                                                                                                                                                                                                      | 10                         |  |
|             | 2.3 | 短絡耐量評価とモデリングにおける課題                                                                                                                                                                                                                                                                                              | 11                         |  |
|             | 2.4 | 本レポートのデータの使用について                                                                                                                                                                                                                                                                                                | 12                         |  |
| 3           |     | ベンチマーク                                                                                                                                                                                                                                                                                                          | 13                         |  |
|             |     | 表3. 評価対象1200V定格のSiC MOSFET ・ROHM 第4世代(トレンチ) SCT4062KR ・WOLFSPEED 平面ゲート C3M0075120K ・TOSHIBA 第2世代(平面ゲート) TW070J120B ・TOSHIBA 第3世代(平面ゲート) TW060N120C ・GeneSiC 第3世代(平面ゲート) G3R075MT120K                                                                                                                            | 14                         |  |
|             | 3.2 | ベンチマーク結果                                                                                                                                                                                                                                                                                                        | 16                         |  |
|             |     | <ul> <li>・典型的な短絡波形の比較</li> <li>・短絡過渡波形と遅延故障の例</li> <li>・1200V SiC MOSFET の短絡耐量比較グラフ</li> <li>・ユニバーサルグラフ</li> <li>・短絡臨界エネルギーの比較: Escf</li> <li>・ゲートリーク電流に関する考察</li> <li>・表4: 1200V SiC MOSFETの電気的性能と短絡耐量の概要と比較</li> <li>・ベンチマーク比較表の結果から</li> <li>・短絡耐量およびトランジスタのスケーリング</li> <li>・短絡耐量と低オン抵抗RoNのトレードオフ</li> </ul> | 17-33                      |  |
| 33          | 3.3 | 短絡耐量に関連したトランジスタ構造について                                                                                                                                                                                                                                                                                           | 34                         |  |
|             |     | <ul><li>・1200 V SiC MOSFET 構造解析</li><li>・トランジスタ構造や技術改善</li><li>・報告された短絡による故障</li><li>・トランジスタ短絡耐量性を強化</li></ul>                                                                                                                                                                                                  | 35-48                      |  |
| 4           |     | 短絡イベントシミュレーション解析                                                                                                                                                                                                                                                                                                | 49                         |  |
|             | 4.1 | 放熱解析                                                                                                                                                                                                                                                                                                            | 51                         |  |
|             |     | <ul><li>・背景情報</li><li>・デバイス構造ベースの熱インピーダンス解析</li><li>・短絡パルス範囲(~us)でのZ<sub>th</sub>のモデリング</li></ul>                                                                                                                                                                                                               | 52-56                      |  |
|             | 4.2 | 短絡エネルギーと温度上昇シミュレーション                                                                                                                                                                                                                                                                                            | 57                         |  |
|             |     | <ul> <li>・熱インピーダンスモデル比較 (ROHM SCT3080KLHR)</li> <li>・熱インピーダンスモデル比較 (WOLFSPEED C3M0075120K)</li> <li>・熱インピーダンスモデル比較 (ROHM SCT4062KR)</li> <li>・熱インピーダンスモデル比較 (GeneSiC G3R075MT120K)</li> <li>・熱インピーダンスモデル比較 (TOSHIBA TW060N120C)</li> </ul>                                                                      | 58<br>59<br>60<br>61<br>62 |  |
| 5           |     | まとめ                                                                                                                                                                                                                                                                                                             | 63                         |  |
| 6           | 6.1 | 参考文献                                                                                                                                                                                                                                                                                                            | 64                         |  |
|             | 6.2 | 関連するLTEC解析レポートのリスト                                                                                                                                                                                                                                                                                              | 65                         |  |
| 7. Appendix |     |                                                                                                                                                                                                                                                                                                                 |                            |  |
|             |     | ・短絡耐量 (評価と解析モデルの枠組み) ・温度上昇ΔΤ¡の解析と推定 ・ハーフブリッジパワーモジュールでの短絡イベントについて                                                                                                                                                                                                                                                | 66-73                      |  |



表4: 1200V SiC MOSFETの電気的性能と短絡耐量の概要と比較

| 1    |     |                                                    |        |                       |           |             |             |             |            |
|------|-----|----------------------------------------------------|--------|-----------------------|-----------|-------------|-------------|-------------|------------|
|      |     |                                                    |        | S                     | ROHM      | WOLFSPEED   | GenSiC      | TOS         | TOSHIBA    |
|      |     |                                                    | Units  | SCT3080KL             | SCT4062KR | C3M0075120D | G3R075MT12K | TW070J120B★ | TW060N120C |
|      | -   | Qualification Level                                |        | 車載用AEC                | 産業用       | 産業用         | 産業用         | 産業用         | 産業用        |
|      | 2   | Package                                            |        | 3 TO-247              | 4 TO-247  | 3, 4 TO-247 |             | TO-3        | 3 TO-247   |
|      | 3   | Technology                                         |        | G3/2016               | G4/2021   | G/2016      | G3/2019     | G2/2020     | G3/2022    |
|      | 4   | Rated drain Voltage, Vdss                          | >      | 1200                  | 1200      | 1200        | 1200        | 1200        | 1200       |
| EI   | 2   | Row/ DC Id                                         | MΩ//A  | 80 / 31               | 62/26     | 75 / 30     | 75/31       | 70/36       | / 09       |
| ecti | 9   | V#N                                                | >      | 4.1                   |           | 2.5         |             |             |            |
| rica | 7   | Gm/W                                               | mS/mm  | 1.55                  | 2.3       | 0.9         | 5.1         | 3.2         | 3.0        |
| al   | 8   | Ciss/A                                             | pF/mm2 | 107                   |           |             |             |             |            |
|      | 6   | Gm/Ciss                                            | 1/ns   | 5.6                   |           |             |             |             |            |
|      | 10  | Chip Size                                          | mm2    | 7.3                   |           |             |             |             |            |
|      | Ξ   | Specific ON resistance, RONxA                      | mD-mm2 | 440                   |           |             |             |             |            |
|      | 12  | Peak SC Current, Isc,pk/W @ 600V                   | A/mm   | 0.084                 |           |             |             |             |            |
| Sho  | 13  | SC Time (to failure), t <sub>sc.f</sub> @ 600V     | sn     | 1~                    |           |             |             |             |            |
| ort- | 14  | F                                                  | ၁      | 1100-1200             |           |             |             |             |            |
| Cir  | 15  | SC Critical Energy-to-Failure Esc,f/AA @ 600V/800V | mJ/mm2 | 165/X                 |           |             |             |             |            |
| cui  | 91- | SC Max Withstand Time, tscm @ 600V/800V            | sn     | 8/4                   |           |             |             |             |            |
| t    | 17  | SC-induced Gate Current turn-on time, t1           | sn     | 9~                    |           |             |             |             |            |
|      | 18  | Transistor Array Active Area, AA                   | mm2    | 5.2                   |           |             |             |             |            |
| Stru | 19  | Transistor Configuration                           |        | Trench Gate<br>Square |           |             |             |             |            |
| ctu  | 20  | Gate Oxide Thickness, Tox                          | ши     | 64                    |           |             |             |             |            |
| re   | 21  | Transistor Cell Pitch, P                           | mn     | 9                     |           |             |             |             |            |
|      | 22  |                                                    |        |                       |           |             |             |             |            |
|      |     |                                                    |        |                       |           | _           |             |             |            |
|      |     | Die photograph                                     |        | D                     | U . 1     | 0000        | 0000,0      |             |            |
|      |     |                                                    |        |                       |           |             |             |             |            |



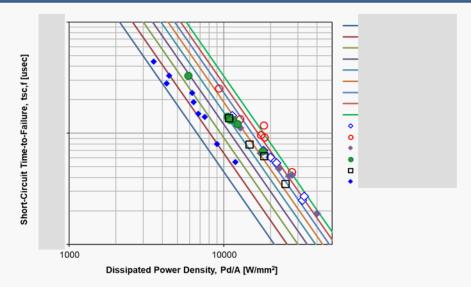



Fig.3.2.8: 1200V SiC MOSFETの消費電力密度(Pd/A)に対する短絡破壊までの時間(tsc,f)の「ユニバーサルグラフ」。 当社測定結果をプロットしている。またグラフには、いくつかの臨界温度に対するtsc,fの理論プロットも記載している

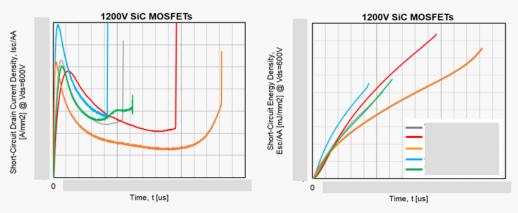



Fig. 3.2.1: 定格 1200V の SiC MOSFET の Vds = 600V での短絡イベント中の正規化されたドレイン電流 Id/AA とエネルギー密度 (Esc/AA) の比較。

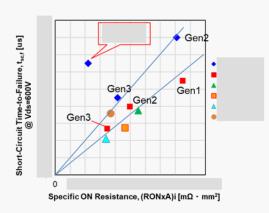



Fig. 3.2.14: 複数世代SiC MOSFETの短絡耐量時間 t<sub>scf</sub> とトランジスタ単位面積当たりON抵抗(RONxA)の相関

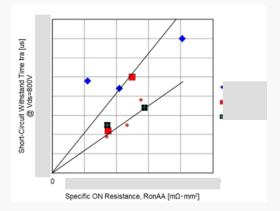



Fig.3.2.15: 複数のメーカーおよび技術世代のデバイスの短絡耐量時間 tra (Vds=800V 時)の傾向の単位面積当たりのオン抵抗 (RonAA) への依存性。



株式会社エルテック Phone: 072-787- 7385 664-0845 兵庫県伊丹市東有岡4丁目<u>42-8</u>

e-mail: contact2@ltec.biz HP: https://www.ltec-biz.com/